Fun With Math Interesting Math Problems


 

1. Which one is larger in between 5050 and 4951 ?

Ans:  50504951=50504950×49=(49+1)504950×49=(49+149)50×149=(1+149)50×149<e×149

=(1+149)49×(1+149)×149<e×(1+149)×149[Aslimx(1+1x)x=e]

<e×5049×149=2.703×5049×149

1352401<15050<4951


2. Solve ab+c=2020 and a+bc=2021 for a,b,c

Ans: a+bc(ab+c)=20212020

aab+bcc=1

a(1b)c(1bc)=1

(1b)(ac)=1

Now we can write 1b=1 which gives b = 0 and ab+c=2020 equation gives c = 2020, a+bc=2021 gives a = 2021.

Again we can write 1b=1 which gives b =2, a-c=-1, and by putting b=2 in given equation we will get

2a+c=2020 and a+2c=2021.

by multiplying 2 with a+2c=2021 and subtracting 2a+c=2020 we will get

2a+4c(2a+c)=40422020

or, 3c=2022

or, c = 674

therefore a=20212c=20212×674=20201348=673

Therefore the solutions are (2021,0,2022) and (672,2,673)


3. Solve for m where 3m2m=65

Ans: If m=0 then 3m2m=3020=11=0,

If m=1 then 3m2m=3121=32=1

If m=2 then 3m2m=3222=94=5

If m=3 then 3m2m=3323=278=19

If m=4 then 3m2m=3424=8116=65

Therefore m = 4


4. Solve a for 2a+2b+2c=148

Ans: 148=2×2×37

 2a+2b+2c=148

2a+2b+2c=22×37

2a2+2b2+2c2=1+36

2a2+2b2+2c2=1+4+32

2a2+2b2+2c2=20+22+25

By comparing both sides,

a2=0a=2

b2=2b=4

c2=5c=7

The required solution is (2,4,7)


5. Which is bigger number in between 222333 and 333222?

Ans: 333222222333

 (333111)2(222111)3

(3111×111111)2(2111×111111)3

(32)111(23)111×1111111

(98)111×1111111

(9888)111

<1

i.e. 333222<222333


6. Solve for xx=4x

Ans: xx=4x

xx2=22x12

Let x=a i.e. x=a2then 

(a2)a22=22a

aa2=22a

log(aa2)=log(22a)

a2log(a)=2alog(2)

a2log(a)=2alog(2)=0

a(alog(a)2log(2))=0

Either a=0 or x=0

Or, (alog(a)2log(2))=0

alog(a)=2log2

By comparing both sides

a = 2 i.e. x=a2=22=4


N.B Generally I have found the questions from Internet


7. Solve Volterra equation

ψ(x)=x+0x(xs)ψ(s)ds

Solution

Taking differentials ψ(x)=1+0xψ(s)ds and ψ(x)=ψ(x) which is a shm equation so the solution becomes ψ(x)=c1sin(x)+c2cos(x) assuming ψ(0)=0 which gives c2=0 ψ(0)=1 c1=1 Therefore : ψ(x)=sin(x) now substituting this into giving equation we will get ψ(x)=x+0x(xs)sin(s)ds ψ(x)=x+[xcoss]0x0xssin(s)ds ψ(x)=xxcosx[scoss]0x0x(coss)ds ψ(x)=xxcos(x)+xcosxthe+sinx ψ(x)=x2xcos(x)sin(x)

Popular posts from this blog

মানুষের সম্ভাব্য অমরত্ব লাভ